Dark | Light
[GUEST ACCESS MODE: Data is scrambled or limited to provide examples. Make requests using your API key to unlock full data. Check https://lunarcrush.ai/auth for authentication information.]

![KimiK2onSOL Avatar](https://lunarcrush.com/gi/w:24/cr:twitter::1935298019320279040.png) Kimi.Ai中文 [@KimiK2onSOL](/creator/twitter/KimiK2onSOL) on x XXX followers
Created: 2025-07-20 05:27:12 UTC

KimiK2:
Meet Kimi K2 — The Open-Source AI That Can Code, Think, and Deploy on Its Own.

Moonshot AI’s Kimi K2 is changing the game — with X trillion parameters, a Mixture of Experts architecture, and the ability to code, think, and execute complex workflows without human help, it's a serious leap forward in the world of open-source AI.

In this video, we break down exactly how Kimi K2 works, how it compares to GPT-4 and Claude, what Google’s Memory Bank is doing in parallel, and why Microsoft’s Phi-3 Mini Flash Reasoning matters more than you think.

🚀 KEY HIGHLIGHTS:
Kimi K2’s Mixture of Experts architecture (only 32B active params!)

Performance vs GPT-4, Claude, and Sonnet

Why Kimi K2 doesn’t just chat, but acts

How Google’s Vertex AI Memory solves context loss

Phi-3 Mini Flash Reasoning: blazing fast, small model

Open-source advantages and local deployment power

Real benchmark numbers: SWE-Bench, TOA-2, CodeBench, MMLU

⏱ TIMESTAMPS:
0:00​ – Intro: The Rise of AI Agents
0:36​ – Kimi K2 Overview: Trillion-Scale Power
1:30​ – Mixture of Experts: Smarter, Cheaper Inference
2:18​ – Muon Clip: Scaling Without Breaking
3:05​ – Kimi K2’s Autonomous Capabilities
4:00​ – Memory Power: 128K Tokens + Expert Modules
4:55​ – Kimi K2 Benchmarks vs GPT-4.1 & Claude
6:08​ – Instruct vs Base Models Explained
6:48​ – Google’s Vertex Memory Bank Explained
7:52​ – Durable Memory in Real-World Agents
8:30​ – Microsoft’s Phi-3 Mini: Speed + Reasoning
9:28​ – Local Deployment & Cost Efficiency
10:05​ – Kimi K2 vs the AI Landscape: Final Thoughts
10:48​ – Free AI Income Blueprint + Outro

🏷 TAGS: $KimiK2
#KimiK2​ #MoonshotAI​ #OpenSourceAI​ #AIagent​ #GPT4Alternative​ #Phi3Mini​ #VertexAI​ #MemoryBank​ #MixtureOfExperts​ #AItools​ #SWEbench​ #CodeBench​ #AIcoding​ #AIbenchmarks​ #TrillionParameterModel​ #FastAI​ #AInews​ #FutureOfAI 

@Kimi_Moonshot 
@techdevnotes 
@elonmusk 
@realDonaldTrump 
@nvidia 
@SolportTom 
@ChatGPTapp
@xai 



![](https://pbs.twimg.com/media/GwRv-TWXQAANDsq.jpg)

XXX engagements

![Engagements Line Chart](https://lunarcrush.com/gi/w:600/p:tweet::1946804059069182445/c:line.svg)

**Related Topics**
[world of](/topic/world-of)
[coins ai](/topic/coins-ai)

[Post Link](https://x.com/KimiK2onSOL/status/1946804059069182445)

[GUEST ACCESS MODE: Data is scrambled or limited to provide examples. Make requests using your API key to unlock full data. Check https://lunarcrush.ai/auth for authentication information.]

KimiK2onSOL Avatar Kimi.Ai中文 @KimiK2onSOL on x XXX followers Created: 2025-07-20 05:27:12 UTC

KimiK2: Meet Kimi K2 — The Open-Source AI That Can Code, Think, and Deploy on Its Own.

Moonshot AI’s Kimi K2 is changing the game — with X trillion parameters, a Mixture of Experts architecture, and the ability to code, think, and execute complex workflows without human help, it's a serious leap forward in the world of open-source AI.

In this video, we break down exactly how Kimi K2 works, how it compares to GPT-4 and Claude, what Google’s Memory Bank is doing in parallel, and why Microsoft’s Phi-3 Mini Flash Reasoning matters more than you think.

🚀 KEY HIGHLIGHTS: Kimi K2’s Mixture of Experts architecture (only 32B active params!)

Performance vs GPT-4, Claude, and Sonnet

Why Kimi K2 doesn’t just chat, but acts

How Google’s Vertex AI Memory solves context loss

Phi-3 Mini Flash Reasoning: blazing fast, small model

Open-source advantages and local deployment power

Real benchmark numbers: SWE-Bench, TOA-2, CodeBench, MMLU

⏱ TIMESTAMPS: 0:00​ – Intro: The Rise of AI Agents 0:36​ – Kimi K2 Overview: Trillion-Scale Power 1:30​ – Mixture of Experts: Smarter, Cheaper Inference 2:18​ – Muon Clip: Scaling Without Breaking 3:05​ – Kimi K2’s Autonomous Capabilities 4:00​ – Memory Power: 128K Tokens + Expert Modules 4:55​ – Kimi K2 Benchmarks vs GPT-4.1 & Claude 6:08​ – Instruct vs Base Models Explained 6:48​ – Google’s Vertex Memory Bank Explained 7:52​ – Durable Memory in Real-World Agents 8:30​ – Microsoft’s Phi-3 Mini: Speed + Reasoning 9:28​ – Local Deployment & Cost Efficiency 10:05​ – Kimi K2 vs the AI Landscape: Final Thoughts 10:48​ – Free AI Income Blueprint + Outro

🏷 TAGS: $KimiK2 #KimiK2​ #MoonshotAI​ #OpenSourceAI​ #AIagent​ #GPT4Alternative​ #Phi3Mini​ #VertexAI​ #MemoryBank​ #MixtureOfExperts​ #AItools​ #SWEbench​ #CodeBench​ #AIcoding​ #AIbenchmarks​ #TrillionParameterModel​ #FastAI​ #AInews​ #FutureOfAI

@Kimi_Moonshot @techdevnotes @elonmusk @realDonaldTrump @nvidia @SolportTom @ChatGPTapp @xai

XXX engagements

Engagements Line Chart

Related Topics world of coins ai

Post Link

post/tweet::1946804059069182445
/post/tweet::1946804059069182445