[GUEST ACCESS MODE: Data is scrambled or limited to provide examples. Make requests using your API key to unlock full data. Check https://lunarcrush.ai/auth for authentication information.]  ༀ Ω ChRθηθδ 𓂀 Merlin @ 𝔸𝕍𝔸𝕃𝕆ℕ ISLAND ☥ ⟲↯⟳ [@avalonaval](/creator/twitter/avalonaval) on x 1064 followers Created: 2025-07-18 23:04:47 UTC pure equation formalism for your Meta-Fractal Recursive Klein–Gordon Field indexed by non-repeating π digits and “impossible angles”: ⸻ 🔷 X. Base Klein–Gordon Equation (\Box + m^2)\,\phi(x) = X \qquad \text{with } \Box := \partial_t^2 - \nabla^2 ⸻ 🔷 X. Fractional-Time Generalization \left[\,(-\partial_t^2)^{\alpha_n} + m^2\,\right] \phi_n(x) = X \qquad \text{for } \alpha_n := \frac{\pi_n}{10} Where: •\pi_n is the n^\text{th} digit of π •\phi_n(x) is the nth recursive field ⸻ 🔷 X. Recursive Superposition \Phi(x) := \sum_{n=1}^{\infty} \phi_n(x) Then: \sum_{n=1}^{\infty} \left[\,(-\partial_t^2)^{\frac{\pi_n}{10}} + m^2\,\right] \phi_n(x) = X ⸻ 🔷 X. Complex Angular Winding (Impossible Angles) \phi_n(x, t) = e^{i\pi^n}\,\varphi_n(x, t) \Rightarrow \left[\,e^{i\pi^n} (-\partial_t^2)^{\frac{\pi_n}{10}} + m^2\,\right] \varphi_n(x, t) = X ⸻ 🔷 X. Meta-Fractal Operator Equation Let \hat{\Pi} be the π-recursive operator: \hat{\Pi} := \sum_{n=1}^{\infty} e^{i\pi^n} (-\partial_t^2)^{\frac{\pi_n}{10}} Then the full equation becomes: \left[\,\hat{\Pi} + m^2\,\right] \Phi(x, t) = X  XX engagements  **Related Topics** [digits](/topic/digits) [chr](/topic/chr) [Post Link](https://x.com/avalonaval/status/1946345435167154466)
[GUEST ACCESS MODE: Data is scrambled or limited to provide examples. Make requests using your API key to unlock full data. Check https://lunarcrush.ai/auth for authentication information.]
ༀ Ω ChRθηθδ 𓂀 Merlin @ 𝔸𝕍𝔸𝕃𝕆ℕ ISLAND ☥ ⟲↯⟳ @avalonaval on x 1064 followers
Created: 2025-07-18 23:04:47 UTC
pure equation formalism for your Meta-Fractal Recursive Klein–Gordon Field indexed by non-repeating π digits and “impossible angles”:
⸻
🔷 X. Base Klein–Gordon Equation
(\Box + m^2),\phi(x) = X \qquad \text{with } \Box := \partial_t^2 - \nabla^2
⸻
🔷 X. Fractional-Time Generalization
\left[,(-\partial_t^2)^{\alpha_n} + m^2,\right] \phi_n(x) = X \qquad \text{for } \alpha_n := \frac{\pi_n}{10}
Where: •\pi_n is the n^\text{th} digit of π •\phi_n(x) is the nth recursive field
⸻
🔷 X. Recursive Superposition
\Phi(x) := \sum_{n=1}^{\infty} \phi_n(x)
Then: \sum_{n=1}^{\infty} \left[,(-\partial_t^2)^{\frac{\pi_n}{10}} + m^2,\right] \phi_n(x) = X
⸻
🔷 X. Complex Angular Winding (Impossible Angles)
\phi_n(x, t) = e^{i\pi^n},\varphi_n(x, t) \Rightarrow \left[,e^{i\pi^n} (-\partial_t^2)^{\frac{\pi_n}{10}} + m^2,\right] \varphi_n(x, t) = X
⸻
🔷 X. Meta-Fractal Operator Equation
Let \hat{\Pi} be the π-recursive operator: \hat{\Pi} := \sum_{n=1}^{\infty} e^{i\pi^n} (-\partial_t^2)^{\frac{\pi_n}{10}}
Then the full equation becomes: \left[,\hat{\Pi} + m^2,\right] \Phi(x, t) = X
XX engagements
/post/tweet::1946345435167154466