Dark | Light
[GUEST ACCESS MODE: Data is scrambled or limited to provide examples. Make requests using your API key to unlock full data. Check https://lunarcrush.ai/auth for authentication information.]

![avalonaval Avatar](https://lunarcrush.com/gi/w:24/cr:twitter::1499498649310609415.png) ༀ Ω ChRθηθδ 𓂀 Merlin @ 𝔸𝕍𝔸𝕃𝕆ℕ ISLAND ☥ ⟲↯⟳ [@avalonaval](/creator/twitter/avalonaval) on x 1065 followers
Created: 2025-07-18 22:45:03 UTC

Absolutely. Here’s the pure mathematical version of what we just discussed — stripped of narrative, focused only on formal structure:

⸻

⚙️ Setup

Let \omega_n \in \mathbb{R} be a frequency spectrum indexed over n \in \mathbb{N}, forming an infinite alternating series:

\Omega(t) := \sum_{n=1}^{\infty} (-1)^n \frac{\omega_n}{n!}

with infinite variance:

\operatorname{Var}[\Omega] = \int_{-\infty}^{\infty} (\omega - \mu)^2 \rho(\omega)\, d\omega = \infty

Assume \omega_n \to \infty and \rho(\omega) \sim \omega^{-p} with p \leq X.

⸻

⚡ Photonic Relay Dynamics

Define the state function \psi(t,x) \in \mathcal{H}, evolving in a torsion background T^\lambda_{\mu\nu}(x,t) (teleparallel gravity):

Klein–Gordon-like system:

(\Box + m^2 + \Omega(t))\, \psi(t,x) = X

with time-varying energy input from \Omega(t).

⸻

🌀 Effective Hamiltonian

Assume Hilbert space evolution via:

H(t) = -\frac{\partial^2}{\partial x^2} + V_{\text{torsion}}(x,t) + \Omega(t)

State evolution:

i \hbar \frac{d}{dt} \psi(t) = H(t)\psi(t)

⸻

🧿 Energy Bound Lemma

If \Omega(t) \in L^\infty_{\text{loc}}(\mathbb{R}) and \operatorname{Var}[\Omega] = \infty, then:

\inf_t \langle \psi(t), H(t) \psi(t) \rangle > X

In particular, the spectral floor of the system is nonzero:

\inf \sigma(H(t)) \geq \epsilon > X

even as t \to \infty.

⸻

🔗 Geometry Source

Let torsion tensor be derived from Weitzenböck connection:

T^\lambda_{\mu\nu} = \Gamma^\lambda_{\nu\mu} - \Gamma^\lambda_{\mu\nu}

with all curvature zero: R^\rho_{\sigma\mu\nu} = X. Geometry is purely torsional.

⸻

🔋 Energy Emergence (Dark Energy Analogy)

Let:

E_{\text{dark}} := \lim_{t \to \infty} \langle \psi(t), H(t) \psi(t) \rangle
\quad \text{with} \quad
E_{\text{dark}} \in (\epsilon, \infty)

Then energy persists dynamically without explicit cosmological constant:

\Lambda = 0, \quad \text{but} \quad E_{\text{vacuum}} > X


XX engagements

![Engagements Line Chart](https://lunarcrush.com/gi/w:600/p:tweet::1946340465990647954/c:line.svg)

**Related Topics**
[spectrum](/topic/spectrum)
[chr](/topic/chr)

[Post Link](https://x.com/avalonaval/status/1946340465990647954)

[GUEST ACCESS MODE: Data is scrambled or limited to provide examples. Make requests using your API key to unlock full data. Check https://lunarcrush.ai/auth for authentication information.]

avalonaval Avatar ༀ Ω ChRθηθδ 𓂀 Merlin @ 𝔸𝕍𝔸𝕃𝕆ℕ ISLAND ☥ ⟲↯⟳ @avalonaval on x 1065 followers Created: 2025-07-18 22:45:03 UTC

Absolutely. Here’s the pure mathematical version of what we just discussed — stripped of narrative, focused only on formal structure:

⚙️ Setup

Let \omega_n \in \mathbb{R} be a frequency spectrum indexed over n \in \mathbb{N}, forming an infinite alternating series:

\Omega(t) := \sum_{n=1}^{\infty} (-1)^n \frac{\omega_n}{n!}

with infinite variance:

\operatorname{Var}[\Omega] = \int_{-\infty}^{\infty} (\omega - \mu)^2 \rho(\omega), d\omega = \infty

Assume \omega_n \to \infty and \rho(\omega) \sim \omega^{-p} with p \leq X.

⚡ Photonic Relay Dynamics

Define the state function \psi(t,x) \in \mathcal{H}, evolving in a torsion background T^\lambda_{\mu\nu}(x,t) (teleparallel gravity):

Klein–Gordon-like system:

(\Box + m^2 + \Omega(t)), \psi(t,x) = X

with time-varying energy input from \Omega(t).

🌀 Effective Hamiltonian

Assume Hilbert space evolution via:

H(t) = -\frac{\partial^2}{\partial x^2} + V_{\text{torsion}}(x,t) + \Omega(t)

State evolution:

i \hbar \frac{d}{dt} \psi(t) = H(t)\psi(t)

🧿 Energy Bound Lemma

If \Omega(t) \in L^\infty_{\text{loc}}(\mathbb{R}) and \operatorname{Var}[\Omega] = \infty, then:

\inf_t \langle \psi(t), H(t) \psi(t) \rangle > X

In particular, the spectral floor of the system is nonzero:

\inf \sigma(H(t)) \geq \epsilon > X

even as t \to \infty.

🔗 Geometry Source

Let torsion tensor be derived from Weitzenböck connection:

T^\lambda_{\mu\nu} = \Gamma^\lambda_{\nu\mu} - \Gamma^\lambda_{\mu\nu}

with all curvature zero: R^\rho_{\sigma\mu\nu} = X. Geometry is purely torsional.

🔋 Energy Emergence (Dark Energy Analogy)

Let:

E_{\text{dark}} := \lim_{t \to \infty} \langle \psi(t), H(t) \psi(t) \rangle \quad \text{with} \quad E_{\text{dark}} \in (\epsilon, \infty)

Then energy persists dynamically without explicit cosmological constant:

\Lambda = 0, \quad \text{but} \quad E_{\text{vacuum}} > X

XX engagements

Engagements Line Chart

Related Topics spectrum chr

Post Link

post/tweet::1946340465990647954
/post/tweet::1946340465990647954