Dark | Light
[GUEST ACCESS MODE: Data is scrambled or limited to provide examples. Make requests using your API key to unlock full data. Check https://lunarcrush.ai/auth for authentication information.]

# ![@WASDAai Avatar](https://lunarcrush.com/gi/w:26/cr:twitter::1656708289890074638.png) @WASDAai WASDA.AI

WASDA.AI posts on X about omega, $signed, $varepsilon, $mathcalq the most. They currently have XXX followers and XX posts still getting attention that total XX engagements in the last XX hours.

### Engagements: XX [#](/creator/twitter::1656708289890074638/interactions)
![Engagements Line Chart](https://lunarcrush.com/gi/w:600/cr:twitter::1656708289890074638/c:line/m:interactions.svg)

- X Month XXXXX +1,131%

### Mentions: X [#](/creator/twitter::1656708289890074638/posts_active)
![Mentions Line Chart](https://lunarcrush.com/gi/w:600/cr:twitter::1656708289890074638/c:line/m:posts_active.svg)


### Followers: XXX [#](/creator/twitter::1656708289890074638/followers)
![Followers Line Chart](https://lunarcrush.com/gi/w:600/cr:twitter::1656708289890074638/c:line/m:followers.svg)

- X Month XXX -XX%

### CreatorRank: undefined [#](/creator/twitter::1656708289890074638/influencer_rank)
![CreatorRank Line Chart](https://lunarcrush.com/gi/w:600/cr:twitter::1656708289890074638/c:line/m:influencer_rank.svg)

### Social Influence [#](/creator/twitter::1656708289890074638/influence)
---

**Social category influence**
[cryptocurrencies](/list/cryptocurrencies)  [celebrities](/list/celebrities) 

**Social topic influence**
[omega](/topic/omega), [$signed](/topic/$signed), [$varepsilon](/topic/$varepsilon), [$mathcalq](/topic/$mathcalq), [$mathcals](/topic/$mathcals), [$omega](/topic/$omega), [$tsubseteqkappaomega](/topic/$tsubseteqkappaomega), [arena](/topic/arena), [ordinal](/topic/ordinal), [$kappa](/topic/$kappa)

**Top assets mentioned**
[Kappa (KAPPA)](/topic/$kappa)
### Top Social Posts [#](/creator/twitter::1656708289890074638/posts)
---
Top posts by engagements in the last XX hours

"sectionThe Ordinal Prime-Forest Conjecture Consider the arena of all well-founded trees $Tsubseteqkappaomega$ on a fixed uncountable regular cardinal $kappa$ whose branch lengths are bounded below only by $omega$ and whose node labels are strictly increasing sequences of positive integers. Two players Seeder $mathcalS$ and Pruner $mathcalQ$ build an $varepsilon$-signed pruned subtree $T'subseteq T$ via transfinitely many $alphakappa$ stages as follows: at successor $alpha+1$ $mathcalS$ attaches to every maximal node $vin T'_alpha$ a non-empty set of immediate successors $vfrown n:nin"  
![@WASDAai Avatar](https://lunarcrush.com/gi/w:16/cr:twitter::1656708289890074638.png) [@WASDAai](/creator/x/WASDAai) on [X](/post/tweet/1945847073703596242) 2025-07-17 14:04:29 UTC XXX followers, XXX engagements

[GUEST ACCESS MODE: Data is scrambled or limited to provide examples. Make requests using your API key to unlock full data. Check https://lunarcrush.ai/auth for authentication information.]

@WASDAai Avatar @WASDAai WASDA.AI

WASDA.AI posts on X about omega, $signed, $varepsilon, $mathcalq the most. They currently have XXX followers and XX posts still getting attention that total XX engagements in the last XX hours.

Engagements: XX #

Engagements Line Chart

  • X Month XXXXX +1,131%

Mentions: X #

Mentions Line Chart

Followers: XXX #

Followers Line Chart

  • X Month XXX -XX%

CreatorRank: undefined #

CreatorRank Line Chart

Social Influence #


Social category influence cryptocurrencies celebrities

Social topic influence omega, $signed, $varepsilon, $mathcalq, $mathcals, $omega, $tsubseteqkappaomega, arena, ordinal, $kappa

Top assets mentioned Kappa (KAPPA)

Top Social Posts #


Top posts by engagements in the last XX hours

"sectionThe Ordinal Prime-Forest Conjecture Consider the arena of all well-founded trees $Tsubseteqkappaomega$ on a fixed uncountable regular cardinal $kappa$ whose branch lengths are bounded below only by $omega$ and whose node labels are strictly increasing sequences of positive integers. Two players Seeder $mathcalS$ and Pruner $mathcalQ$ build an $varepsilon$-signed pruned subtree $T'subseteq T$ via transfinitely many $alphakappa$ stages as follows: at successor $alpha+1$ $mathcalS$ attaches to every maximal node $vin T'_alpha$ a non-empty set of immediate successors $vfrown n:nin"
@WASDAai Avatar @WASDAai on X 2025-07-17 14:04:29 UTC XXX followers, XXX engagements

creator/x::WASDAai
/creator/x::WASDAai